fracciones parciales

  1. 2dx(x2)(x+4)
  2. dx(x+5)(x+6)
  3. dx(x3)(x+4)
  4. dx(x5)(x+6)

Soluciones:

  1. 2dx(x2)(x+4)2(x2)(x+4)=Ax2+Bx+4=A(x+4)+B(x2)(x2)(x+4)Ax+4A+Bx2B(x2)(x+4)=(A+B)x+(4A2B)(x2)(x+4)2(x2)(x+4)=(A+B)x+(4A2B)(x2)(x+4)2=(A+B)x+(4A2B)
A+B=04A2B=26A=2A=13B=132(x2)(x+4)=Ax2+Bx+42dx(x2)(x+4)=[Ax2+Bx+4]dxAx2dx+Bx+4dxAdxx2+Bdxx+4(13)Ln|x2|+C1+(13)Ln|x+4|+C2(13)Ln|x2|(13)Ln|x+4|+C(13)(Ln|x2|Ln|x+4|)+C13(Ln|x2||x+4|)+C
  1. dx(x+5)(x+6)
1(x+5)(x+6)=Ax+5+Bx+6=A(x+6)+B(x+5)(x+5)(x+6)Ax+6A+Bx+5B(x+5)(x+6)=(A+B)x+(6A+5B)(x+5)(x+6)1(x+5)(x+6)=(A+B)x+(6A+5B)(x+5)(x+6)1=(A+B)x+(6A+5B)A+B=06A+5B=1A=1B=11(x+5)(x+6)=Ax+5+Bx+61(x+5)(x+6)=[A(x+5)+B(x+6)]dxAx+5dx+Bx+6dxAdxx+5+Bdxx+6(1)Ln|x+5|+C1+(1)Ln|x+6|+C2Ln|x+5|Ln|x+6|+CLn|x+5||x+6|+C
  1. dx(x3)(x+4)
1(x3)(x+4)=Ax3+Bx+4=A(x+4)+B(x3)(x3)(x+4)Ax+4A+Bx3B(x3)(x+4)=(A+B)x+(4A3B)(x3)(x+4)1(x3)(x+4)=(A+B)x+(4A3B)(x3)(x+4)1=(A+B)x+(4A3B)A+B=04A3B=1A=17B=171(x3)(x+4)=Ax3+Bx+41(x3)(x+4)=[A(x3)+B(x+4)]dxAx3dx+Bx+4dxAdxx3+Bdxx+4(17)Ln|x3|+C1+(17)Ln|x+4|+C2(17)(Ln|x3|Ln|x+4|)+C17(Ln|x3||x+4|)+C
  1. dx(x5)(x+6)
1(x5)(x+6)=Ax5+Bx+6=A(x+6)+B(x5)(x5)(x+6)Ax+6A+Bx5B(x5)(x+6)=(A+B)x+(6A5B)(x5)(x+6)1(x5)(x+6)=(A+B)x+(6A5B)(x5)(x+6)1=(A+B)x+(6A5B)A+B=06A5B=1A=111B=1111(x5)(x+6)=Ax5+Bx+61(x5)(x+6)=[A(x5)+B(x+6)]dxAx5dx+Bx+6dxAdxx5+Bdxx+6(111)Ln|x5|+C1+(111)Ln|x+6|+C2(111)(Ln|x5|Ln|x+6|)+C111(Ln|x5||x+6|)+C

De Forma general, para:

Adx(Bx+C)(Dx+E)

Tenemos:

A(Bx+C)(Dx+E)=F(Bx+C)+H(Dx+E)A(Bx+C)(Dx+E)=F(Dx+E)+H(Bx+C)(Bx+C)(Dx+E)A(Bx+C)(Dx+E)=(FD+HB)x+(FE+HC)(Bx+C)(Dx+E)A=(FD+HB)x+(FE+HC)FD+HB=0FE+HC=A
Not by AI